
Uses a support vector regression model to calibrate numeric predictions
cal_estimate_svm.Rd
Uses a support vector regression model to calibrate numeric predictions
Usage
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL
)
# S3 method for class 'data.frame'
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL
)
# S3 method for class 'tune_results'
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...
)
# S3 method for class 'grouped_df'
cal_estimate_svm(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,
...
)
Arguments
- .data
An ungrouped
data.frame
object, ortune_results
object, that contains a prediction column.- truth
The column identifier for the observed outcome data (that is numeric). This should be an unquoted column name.
- estimate
Column identifier for the predicted values
- smooth
Applies to the svm models. It switches between a polydot
TRUE
, and vanilladotFALSE
.- parameters
(Optional) An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. Applies only to
tune_results
objects.- ...
Additional arguments passed to the models or routines used to calculate the new predictions.
Details
This function uses existing modeling functions from other packages to create the calibration:
kernlab::ksvm()
with a "vanilladot" is used whensmooth
is set toFALSE
kernlab::ksvm()
with a "polydot" is used whensmooth
is set toTRUE
These methods estimate the relationship in the unmodified predicted values
and then remove that trend when cal_apply()
is invoked.