
Uses a support vector regression model to calibrate numeric predictions
cal_estimate_svm.RdUses a support vector regression model to calibrate numeric predictions
Usage
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL
)
# S3 method for class 'data.frame'
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL
)
# S3 method for class 'tune_results'
cal_estimate_svm(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...
)
# S3 method for class 'grouped_df'
cal_estimate_svm(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,
...
)Arguments
- .data
An ungrouped
data.frameobject, ortune_resultsobject, that contains a prediction column.- truth
The column identifier for the observed outcome data (that is numeric). This should be an unquoted column name.
- estimate
Column identifier for the predicted values
- smooth
Applies to the svm models. It switches between a polydot
TRUE, and vanilladotFALSE.- parameters
(Optional) An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. Applies only to
tune_resultsobjects.- ...
Additional arguments passed to the models or routines used to calculate the new predictions.
Details
This function uses existing modeling functions from other packages to create the calibration:
kernlab::ksvm()with a "vanilladot" is used whensmoothis set toFALSEkernlab::ksvm()with a "polydot" is used whensmoothis set toTRUE
These methods estimate the relationship in the unmodified predicted values
and then remove that trend when cal_apply() is invoked.