
Fit an SVM novelty detection model to estimate an applicability domain.
apd_svm_novel_detection.Rd
apd_svm_novel_detection()
fits an 'one-svc' novelty detection model.
Usage
apd_svm_novel_detection(x, ...)
# Default S3 method
apd_svm_novel_detection(x, ...)
# S3 method for class 'data.frame'
apd_svm_novel_detection(x, ...)
# S3 method for class 'matrix'
apd_svm_novel_detection(x, ...)
# S3 method for class 'formula'
apd_svm_novel_detection(formula, data, ...)
# S3 method for class 'recipe'
apd_svm_novel_detection(x, data, ...)
Arguments
- x
Depending on the context:
A data frame of predictors.
A matrix of predictors.
A recipe specifying a set of preprocessing steps created from
recipes::recipe()
.
- ...
Options to pass to
kernlab::ksvm()
. Options should not includedata
.- formula
A formula specifying the predictor terms on the right-hand side. No outcome should be specified.
- data
When a recipe or formula is used,
data
is specified as:A data frame containing the predictors.